Climate Change in the Yakima Basin: Implications for Aquatic Habitat and Water Management

Yakima Basin Science & Management Conference 2015

Ingrid M. Tohver – Climate Impacts Group, University of Washington

The Climate Impacts Group

An interdisciplinary team based at UW studying climate impacts in the Pacific Northwest since 1995

Areas of study:

- Water resources
- Salmon
- Forests
- Coasts
- Agriculture

Objectives

- Increase regional resilience to climate variability and change
- Produce science accessible to (and useful for!) the decision making community

Observed Changes in PNW Climate

Average annual PNW temperature has increased +1.3°F (1885-2011)

Warming observed in all seasons except spring (1980-2011)

Rate of warming has increased since 1970

Short-term periods of cooling (seasonal or annual) are normal

(Figure source: Climate Impacts Group; see also Kunkel et al. 2013, Mote et al. 2013; Abatzaglou 2014)

Mean Temperature Trend Analysis 1895-2014

http://www.climate.washington.edu/trendanalysis/

No clear trend in observed average annual precipitation

- Slightly higher variability (+16%) since 1970
- No statistically significant trends

Decline in Long-term Spring Snowpack

Spring snowpack varies year-to-year, but declined ~25% from mid-20th century through 2006

Changes in regionally averaged April 1 SWE for the WA and OR Cascades, 1944-2006

Mote et al. 2008

Snow-Influenced Hydrology

Historical

Watershed Classification

Earlier Peak Streamflow in Snowmelt-Influenced Basins

June Streamflow Trends (fraction of annual flow) 1948-2008 -15% to -8% • -8% to -4% • -4% to -2% O -2% to -1% O -1% to 0% O 0% to +1% O + 1% to +2% • +2% to +3% Elevation < 300 ft 300 ft - 1500 ft <u>3</u> 1500 ft - 3000 ft 3000 ft - 6000 ft 🛸 > 6000 ft

Decrease in Summer Low Flows

1948-2006

Observed Global Temperatures

Data source: NASA Goddard Institute for Space Studies

Observed Global Temperatures Anomalies

Figure sources: Met Office and IPCC 2013

Global Climate System and Models

Major determinants of climate:

- Solar radiation*
- Atmospheric GHGs*
- Natural climate variations
- Volcanoes

Climate models represent the interactions of the atmosphere and oceans as numbers

Climate Model Responses to Inputs

Only natural forcings

Anthropogenic and natural forcings

Models cannot track observed temperature changes without the input of human-generated greenhouse gases

Source: Hegerl et al. 2007

The Future Ain't What it Used to Be

- Yogi Berra

Muir Glacier in Alaska

Aug 13, 1941

Aug 31, 2004

Image Credit: National Snow and Ice Data Center

Projected 21st Century Global Warming

Projected Increases in PNW Temperature

Projected Changes in PNW Annual Precipitation

Small changes in annual precipitation (-5% to +10%)

Projected Changes in Seasonal Precipitation

Some models show large seasonal changes

Projections for the Yakima Basin

Precipitation* (% change)	2020s (2010 – 2039)	2040s (2030 – 2059)	2080s (2070 – 2099)
Annual	+ 0.22%	+ 2.1%	+ 4.9%
Cool season (Oct – Mar)	+ 2.3%	+ 5.4%	+ 9.6%
Warm season (Apr – Sep)	- 4.2%	- 5.0%	- 4.7%
Temperature* (°F change)	2020s (2010 – 2039)	2040s (2030 – 2059)	2080s (2070 – 2099)
Temperature* (°F change) Annual	2020s (2010 – 2039) + 2.1	2040s (2030 – 2059) + 3.7	2080s (2070 – 2099) + 6.3
Temperature* (°F change) Annual Cool season (Oct – Mar)	2020s (2010 - 2039) + 2.1 + 1.9	2040s (2030 - 2059) + 3.7 + 3.3	2080s (2070 - 2099) + 6.3 + 5.8

*Compared to 1970 – 1999 averages

Primary Driver: Loss of Snow Cover

Snow Water Equivalent responses in the Yakima Basin?

Historical

2020S

2040S

2080S

As temperatures warm, more winter precipitation projected to fall as rain rather than stored as snow.

Spring snowpack is projected to decline, *especially in warmer mid-elevation basins*.

Snowpack projected to melt earlier with warmer spring temperatures.

Snowpack considered the Yakima's 6th reservoir

Other 5 man-made structures can store ~30% of annual runoff (peak storage in June)

Historical

Watershed Classification

An overall transition from snow-dominant \rightarrow mixed run-off \rightarrow rain dominant basins as more precipitation falls as rain

What to expect for water resources in the Yakima Basin

2040 Projected Climate Change Impact on Summer Flows by WRIA

Source: Yakima Basin Integrated Water Resource Management Plan

Increased Competition for Summer Water Supplies: Irrigation

Projected change in water shortage* (% of years) in the Yakima Basin for a moderate greenhouse gas scenario (A1B):

- *Historically (1979-1999):* 14%
- Projected (2020s): 32%
- Projected (2040s): 36%
- Projected (2080s): 77%

*Based on water prorating for junior water users (< 75% of current operations)

Increased Stress for Salmon

Increased Floods in Sensitive Basins

Reduced Summer Streamflows

Watersheds with significant groundwater contributions to summer streamflow may be less responsive to climate change than indicated here. Figure source: National Climate Assessment Figure 21.2b.

Summertime Stream Temperature Thresholds for Fish

2080s

http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html

Increasing Summer Soil Moisture Deficit

450 mm = ~17 inches

25 mm = ~1 inch

Increased wildfire risk

Area burned by fire in the Columbia River Basin is projected to double by 2020s, triple by 2040s, x5 by 2080s (relative to median for 1916-2006). *(Littell et al. 2010, 2012)*

Increased wildfire risk: +2.2 F

Examples of Potentially Affected Decisions: Impacts on Water Management and Salmon

- Flow management (timing, volume)
- Habitat restoration project planning, implementation
- Culvert sizing, construction
- Hatchery management
- Invasive species management
- Harvest rates/limits
- Flood management

Yakima River Basin Integrated Water Resource Management Plan: Key Elements

- Fish Passage
- Fish Habitat Enhancement
- Modifying Existing Structures and Operations
- Surface Storage
- Market-based Reallocation
- Groundwater Storage
- Enhanced Water Conservation

The Climate Impacts Group

www.cig.uw.edu cig@uw.edu

Ingrid M Tohver itohver@uw.edu

