NATIONAL FARM CHEMURGIC COUNCIL

BULLETIN

000

UNITED STATES IMPORTS
AS POSSIBLE NEW CROPS FOR
EXPERIMENTATION AND LARGE
SCALE DOMESTIC CULTIVATION

Published by the

National Farm Chemurgic Council

50 WEST BROAD STREET

COLUMBUS OHIO

PRICE TWENTY-FIVE CENTS

National Farm Chemurgic Council

NATIONAL HEADQUARTERS • 50 WEST BROAD TOWER • COLUMBUS, OHIO

Incorporated in the State of Ohio (Non-Profit) for Scientific and Educational Purposes Objective: To Advance the Industrial Use of American Farm Products Through Applied Science

BOARD OF GOVERNORS

Agriculture

H. E. Babcock
Cornelius J. Claassen
D. Howard Doane
G. G. McIllroy
Wheeler McMillen
Elmer Nall
Louis J. Taber
John A. Widtsoe
Arnold P. Yerkes

Industry

Edward J. Dies Russell G. East Howard R. Huston L. F. Livingston August Merz Albert M. Paul Clinton T. Revere David E. Ross Harry H. Straus Charles A. Thomas Robert E. Wood

Science

Roger Adams
Henry K. Benson
Karl T. Compton
Perrin H. Long
Robert A. Millikan
Edward R. Weidlein

Officers

Wheeler McMillen
President
Louis J. Taber
Vice-President
David E. Ross
Vice-President
Roger Adams
Vice-President
Robert D. McMillen
Secretary
John W. Ticknor
Treasurer

Staff

John W. Ticknor
Asst. to President
Ernest L. Little
Managing Director

NATIONAL FARM CHEMURGIC COUNCIL

BULLETIN

000

UNITED STATES IMPORTS
AS POSSIBLE NEW CROPS FOR
EXPERIMENTATION AND LARGE
SCALE DOMESTIC CULTIVATION

Published by the

National Farm Chemurgic Council

50 WEST BROAD STREET

COLUMBUS, OHIO

PRICE TWENTY-FIVE CENTS

Table of Contents

	tang with remard to new chops an american marks	Page No.
I.	Introductory Remarks by Wheeler McMillen,	
	President of the National Farm Chemurgic Council	
	oly available. Semesof theid may be adaptable for production their establishment on A	
II.	Preface by Robert T. Willkie and Paul J. Kolachov, Joseph E. Seagram & Sons, Inc., Louisville, Kentucky	6
	are purchased first by industrial processors who later sell the	
	Itemized List of Imports	
.1901	st from a foreign processor? Possibly he could buy it ches	
	Literature on the Subject	
	ners of his product. It is to his advantage to support a new c	
	to the supply will be made better compared as it quantity and	
	rice. Schmarines don't sink Jarma	
td b	striking furt is that 80% of the national farm (moorne is came	
	t the ferme. The other half of the farms earlie the remaining	
	sumple names dramatize the urgent need for more sources of	
	e to socupy more fully the lands, is not said entrepes of agricult	
	thenes spends of the nation in any way depends upon a fair	
	u of the people being associated with the land, the increase of pi g apportunity on the land is a problem of major importance.	
	he authors of the bullette have made a forcer's contribution b	T
mas'	sulpon. They have revealed a wide and third list of new a	

Introductory Remarks

If there are any who doubt the desirability of seeking to establish new crops in the American agricultural economy, one needs only to refer to any farmer or businessman in the soybean-producing states. In 1914, about 2,000 bushels of soybeans were harvested for seed. I haven't looked up the consumption, but it certainly was small. The 1941 crop is around 110,000,000 bushels. Considerable acreages were grown in addition for hay and forage. Because of the rapid expansion of uses in the food, feed and industrial fields, soybeans for several years, despite a phenomenal rise in production (from 45,000,000 bushels in 1935), have been the most satisfactorily priced major farm crop. Without this crop, more acres of corn, wheat and oats would have been grown further to depress the prices of those commodities.

The present American expenditure for many of the crops described in this bulletin is trivial, compared with total farm income. But one or more of them may earn its way to a large expansion of demand, once it is amply available. Some of them may be adaptable for production in communities of limited area. In any event, their establishment on American farms will represent a specific economic gain, be it large or small.

All of these are items now purchased by American users. Most of them are purchased first by industrial processors who later sell the end products to American consumers. It is out of place to ask whether the purchase of these materials from foreign farmers is not in a way equivalent to purchase by the American farm consumer of the industry's end product from a foreign processor? Possibly he could buy it cheaper, but would he thus employ American labor and capital? The industrial user will, I believe, profit in the long run by buying his raw material from consumers of his product. It is to his advantage to support a new crops program. His supply will be under better control as to quality if produced in this country, and certainly will be more stable as to quantity available and price. Submarines don't sink farms.

A striking fact is that 89% of the national farm income is earned by half of the farms. The other half of the farms earns the remaining 11%. These simple figures dramatize the urgent need for more sources of cash income to occupy more fully the lands, hands and energies of agriculture. If the future security of the nation in any way depends upon a fair proportion of the people being associated with the land, the increase of profitmaking opportunity on the land is a problem of major importance.

The authors of this bulletin have made a forceful contribution by its preparation. They have revealed a wide and varied list of new farm opportunities, worthy of experimentation and test. To anyone familiar

with the total imports of agricultural products, and of items made from raw materials, it will be apparent that they have been exceedingly modest in pointing to a total of only \$131,000,000. They have not included such non-competitive products as coffee, for which domestic production is naturally very unlikely. They have not included several competitive (and controversial) items such as meats and sugar, which run into large figures, nor the tropical starches. Nor have they mentioned rubber, which no one knows we *can't* produce from some other plants than the hevea tree. With new knowledge of plant genetics and experimentation with chromosomes, the thought of increasing the latex content of some present weed is not inconceivable.

The National Farm Chemurgic Council is genuinely appreciative of the extensive labor to which the authors have gone in preparing this material for publication and for the arrangement they have made for its publication. It will, I am sure, prove an important stimulus to chemurgic thinking with regard to new crops on American farms.

> Wheeler McMillen, President National Farm Chemurgic Council 50 West Broad Tower Columbus, Ohio

Preface

About a dozen different types of aromatic plants, drugs, and specialty crops have been discussed in a series of publications by the authors during the past three years. This bulletin covers a larger scope; it contains a list of United States imports during the ten-year period from 1929 to 1938 of crops worth considering for experimentation and subsequent large-scale cultivation. By listing the amount of each item imported, as given in the yearly publication of the United States Department of Commerce, FOR-EIGN COMMERCE AND NAVIGATION OF THE UNITED STATES, we have found that over this ten-year period an average of over 131 million dollars was spent yearly for materials that could be successfully produced in the United States.

All of these crops show unusual possibilities for cultivation in this country, some in the subtropical regions of California, Florida, and the Gulf of Mexico, others in the northern regions of the country. The United States is geographically fortunate, inasmuch as there is a wide range of climatic conditions and soils within its borders. For this reason, we could cultivate any of the crops listed in this bulletin.

However, United States farmers are conservative. They have a preconceived idea that certain crops can be grown successfully only in Europe, Asia, or South America. The United States Department of Agriculture, agricultural colleges and experiment stations should take the initiative to correct this prejudice. Secondly, those presently engaged in the import and sale of such products naturally are loathe to see the business and profits derived therefrom dispersed to other channels.

A year ago when we came out with the statement that specialty crops should be cultivated in our country, the idea was ridiculed as an impossibility, but experimentation proved that cultivation of these crops is practical not only on a small scale, but in large acreages.

The advisability of growing specialty crops becomes a matter of economy when one considers that our scientific implements and agricultural knowledge enable us to produce crops actually more cheaply by our machine methods than they can be grown and harvested in foreign countries where labor is available for a few cents a day. We can grow rice more economically than we can buy it from China.

During the first World War when our import trade was cut off, American farmers took over the cultivation of many foreign-grown crops and continued to produce them after the Armistice. Whereas we had previously bought large quantities of apple seedlings from France, our domestic production now supplies our needs. When German dyes were

no longer available during the War of 1918, the American dye industry was forced into existence. Now the permancy and color of American dyes has completely eradicated the belief that German dyes could not be equalled, and 98 per cent of our needs are supplied by our own dye industries.

The 1940 Census revealed the tendency of the new generation of American farmers to remain in the country rather than move to the city. This fact emphasizes the necessity for growing crops with a higher profit per acre than is being obtained by many farmers at present. American farmers are urged to diversify their crops instead of relying on one or two staples. This can be accomplished by experimentation, which will reveal what crops are adapted to various soils and climates. Already we know that while Indiana and Illinois soils yield about fifty bushels of corn per acre, Texas farmers do well to obtain sixteen. Obviously it would profit the Texan to experiment with crops better suited to his soil and climate.

Of the 131 items which we have listed, there is a sufficient domestic market for some crops to warrant their cultivation on a large scale. Others are marketable only in small quantities, not necessarily because of any inherent quality of the plant, but because insufficient knowledge prevents the realization of its possibilities. Here again, experimentation is our keyword. Consider the lowly soybean, brought from Asia to this country nearly a century and a half ago, which only in the past twenty-five years has come to be such an important crop that ten million acres are cultivated not only for agricultural purposes of hay, pasture, and silage, but for extensive use of the extracted oil as an edible product and for wide industrial use.

Perhaps some efforts to grow a few of these crops in this country twenty or thirty years ago were not successful, and experimentation was not sufficient to develop any practical method for growing them on American soil. But today the picture has changed, for increased knowledge of plant chemistry, soil and climatic conditions, irrigation and fertilization has put the work on an entirely different basis.

When we purchase from foreign countries an annual average of 131 million dollars worth of aromatic plants and essential oils, drugs, spices, gardening and foraging seeds, oil seeds, edible oils, and quick-drying oils for the paint and varnish industry, we are buying only what we actually need, and with just enough materials at hand for immediate demands, the door is closed to experimentation for wider use of the materials and for utilization of by-products. If we had a small surplus, we could experiment, and we might uncover more valuable facts like the discovery that an odor identical to that of the costly oil of rose can be made from coriander oil.

However, efforts should first be in the directions of increasing the quality and the yield per acre. Only one country — Germany — cultivates licorice. In other countries where the plant is grown in the wild state, the

yield is about 900 pounds per acre. The yield in Germany is 3300 pounds per acre. Poppy seed grown in Holland contains fifty to fifty-five per cent oil. German-grown poppy seed yields 80 per cent oil. In the light of these facts, experimentation with sunflower seed, for instance, might increase the oil yield from its present 32 per cent to perhaps 50 per cent. Factors influencing the yield of oil are soil, irrigation, fertilization, climatic conditions, planting methods, and quality and variety of seed. In botany, the "Law of Minimum" states that the factor represented in the minimum guides and governs the growth of the plant. Since the elements present in smallest quantities play this most important role, a thorough investigation of soil composition is urged, so that conditions of cultivation may always be optimum.

Already our domestic mint oil is sold in competition with the Japanese oil. Our production of citrus oils is almost sufficient to supply our needs, and domestic lemongrass oil is a still more recent enterprise. Thus, we are proving to the conservatives in the flavoring industry that imported oils can be equalled in quality, and even improved upon.

In experimenting with new crops it is strongly advised that the best varieties of seeds, roots, or cuttings be used. We must not repeat the mistake made in the development of hybrid corn, for although we know the yield per acre has been increased, we doubt whether the quality of the grain has been improved. The use industry makes of corn should be considered along with increased yield the farmer obtains. The agronomist did not consult with the chemist in choosing the seed that would produce a crop complying with its industrial usages.

When Russian and Hungarian coriander seed yields one per cent essential oil, it is not worth while to plant Moroccan seed, which contains .25 per cent, or the East Indian variety giving about .1 per cent. The best type of material is usually obtained from the country where the finest quality seed is cultivated. We stress the importance of experiments with crossing to develop an even better type of seed.

A 131 million dollar domestic market challenges the research man, the industrial chemist, and the agronomist to work hand in hand in their respective fields of increasing scientific knowledge, developing varied usages, and cultivating new crops.

Appreciation is extended to Mr. J. R. Stuetz of the Public Relations Department for his cooperation in the preparation of this bulletin, and to Miss Lois C. Nesbit for compiling the statistical data.

The AUTHORS

Louisville, Kentucky, October, 1941.

ITEMIZED LIST OF IMPORTS

Showing Average Amount Imported per Year, 1929 - 1938 and Average Amount Paid per Year

1. ACACIA GUM, or GUM ARABIC, Leguminosae

Sources: Italy, United Kingdom, Egypt, French Africa

Pounds Imported: 6,914,753 Amount Paid: \$584,161

Uses: Pharmacy, adhesives, inks, textile printing, confectionery

2. Aconite, Althea, or Marshmallow Root, leaves and flowers, Aconitum napelius

Sources: Italy, Belgium, U.S.S.R.

Pounds Imported: 23,934 Amount Paid: \$3,012

Use: Medicine (cardiac and nerve sedative)

3. Acorns, Quercitol, and Dandelion Roots, Taraxacum

Sources: Hungary, Germany, Italy Pounds Imported: 1,383,469

Amount Paid: \$44,923

Uses: Medicine

4. AGAR AGAR, dried mucilaginous substance extracted from various

species of Gelidium and Algae Sources: United Kingdom, Japan

Pounds Imported: 530,492

Amount Paid: \$273,126

Uses: Culture medium in bacteriology, sizing for silk, adhesives, substitute for gelatin, pharmaceutical preparations, photography (Ingredient of sensitized emulsions); ingredient of vegetarian foods; sausage casing manufacture, foodstuffs (thickening agent in milk, cream, ice cream, etc., substitute for white of egg)

5. ALFALFA, Medicago sativa

Sources: Canada, Argentina, Union of South Africa, France, Hungary.

Pounds Imported: (Seed) 1,135,938

Amount Paid: \$195,698 Use: Seeding purposes

6. ALMONDS, shelled, Prunus communis

Sources: Spain, Italy

Pounds Imported: 9,983,866

Amount Paid: \$2,225,918

Uses: Recovery of the essential oil: flavoring compounds, preparation of amygdalin

7. ALMOND OIL, SWEET, from ripe, seed of Prunis amygdalus, var.

Sources: France, Netherlands, United Kingdom

Pounds Imported: 93,447 Amount Paid: \$41,708

Uses: Perfumes; lubricant for delicate mechanisms, medicine (emollient)

8. ALMOND OIL, BITTER, essential oil from seeds of *Prunus amygdalus*, Stokes (*Amygdalus communis L*.) the almond tree, or the seeds of *Prunus armeniacus*, *L*., the apricot tree

Sources: France, Germany, Italy Netherlands, Canada

Pounds Imported: 16,665 Amount Paid: \$31,766 Uses: Medicine, flavoring

9. ALMOND PASTE, residue obtained after expressing oil from almonds

Sources: France, Germany, Netherlands

Pounds Imported: 1,900

Amount Paid: \$692

Uses: Cosmetics; manufacturing bitter almond water; perfume base; cooking; confectionery

10. ALOES, Liliacae

Sources: Netherlands W. India Pounds Imported: 860,671 Amount Paid: \$142,408

Use: Cathartic. Aloes Oil, stimulant of fermentation

11. AMBER SEED OIL, Abalmoschus

Source: Germany

Pounds Imported: 1,826 Amount Paid: \$3,725 (9 year average)

Uses: Medicine, treatment of hysteria and whooping cough, skin

irritant

12. ANGELICA ROOT, Angelica archangelica L., umbelliferae

Source: Germany

Pounds Imported: 33,253 Amount Paid: \$26,871

(2 year average, 1937 and 1938)

Uses: Medicine (aromatic), tonic for digestion; candy; food ingredient; source of angelica root oil (used in perfumes and for flavoring bitters); rectification of alcohol and distilled liquors

13. ANISE SEED, Pimpinella anisum

Sources: Bulgaria, Rumania, Russia, China, French Indo-China

Pounds Imported: 492,259

Amount Paid: \$38,086

Uses: Manufacture of oil: condiment; flavoring pastries, candies, fruit preserves, pickles, and canned foods such as soups and meats

14. ARROWROOT, Maranta arundinacea

Sources: France, British West India

Pounds Imported: 3,205,292

Amount Paid: \$189,571

Uses: Food, sizing laundry, adhesives, face powder, starches, bak-

ing and food industries

15. AVOCADOS, Persea americana

Sources: British West Indies, Cuba

Pounds Imported: 7,610,457 Amount Paid: \$152,755

(8 year average)

Use: Food

16. BELLADONNA, Atropa belladonna

Sources: Russia, Yugoslavia, Italy

Pounds Imported: 184,604 Amount Paid: \$18,206

Uses: Roots and leaves in medicine as narcotic and anodyne, and as

a powerful mydriatic

17. BERGAMOT OIL, Citrus bergamia

Sources: Italy, France Pounds Imported: 94,637 Amount Paid: \$225,024

Uses: Perfumery

18. Bluberries, V. corybosum

Sources: Norway, Canada, Newfoundland, Labrador

Pounds Imported: 9,188,547 Amount Paid: \$558,154 (4 year average, 1935 - 1938)

Use: Food and preserves

19. BUCHU LEAVES, Diasma ericoides

Sources: Union of South Africa Pounds Imported: 107,507 Amount Paid: \$22,873

Use: Medicine - diseases of urinary organs

20. Cabbage Seed, Brassica oleracea

Sources: Netherlands, Denmark

Pounds Imported: 286,560 Amount Paid: \$124,033

Uses: Seeding purposes: Oil used as illuminant; soap manu-

facture; ointments and linaments; substitute for olive oil

21. CALAMUS ROOT, Acorus calamus

Source: Russia

Pounds Imported: 13,428

Amount Paid: \$497

(7 year average, 1929 - 1935)

Uses: Medicine and preparation of calamus oil, which is used in

the preparation of liqueurs; medicine, perfumery

22. Camomile (Chamomile), Chamomile Flowers, Matricaria, Anthemis nobilis

Sources: Hungary, Yugoslavia, Belgium

Pounds Imported: 183,448 Amount Paid: \$24,332

Use: Medicine - aromatic bitter

23. CANANGA or YLANG-YLANG, Canangium

Sources: France, Netherlands India

Pounds Imported: 42,522 Amount Paid: \$108,069

Uses: Perfumery, medicine

24. CANARY SEED, Phalaria canariensis (Canary Grass)

Sources: Argentina, Turkey Pounds Imported: 18,224,891

Amount Paid: \$519,783

Use: Canary food

25. Capsicum or Cayenne Peppers, Capsicum solanaceae

Sources: Japan, Mexico, French Africa

Pounds Imported: 1,681,172 Amount Paid: \$152,176

Uses: Condiment; medicine (powerful local stimulant)

26. CARAWAY SEED, Carum carvi

Sources: Netherlands, Russia

Pounds Imported: 5,469,100

Amount Paid: \$370,413

Uses: Seed - Medicine, carminative and stomachic; flavoring; con-

diment. Oil - medicine; flavoring; soaps, gin, perfumes.

27. CARDAMON SEED, Elettaria

Sources: British India, Guatemala

Pounds Imported: 209,532 Amount Paid: \$146,646

Uses: Medicine (aromatic): condiment; source of perfume, extract

28. Cashew Nuts, Anacardium occidentale

Sources: British India, Haiti, United Kingdom, British East Africa

Pounds Imported: 16,748,735

Amount Paid: \$2,811,210

(9 year average)

Uses: Eating purposes: oil used in medicine, cosmetics

29. Cassia Buds, Cassia, and Cassia Vera, Leguminosae

Sources: China, Netherlands India, French Indo China

Pounds Imported: 876,163

Amount Paid: \$67,162

Uses: Dried fruit used in manufacture of medicines. Oil (distilled from twigs and leaves) used in making flavoring and

perfumery

30. CASTOR BEANS, Ricinus

Sources: Brazil, Haiti, Argentina

Pounds Imported: 116, 953, 041

Amount Paid: \$2,794,048

Uses: Source of Castor Oil, a medicine, cathartic, high-grade lubricant; leather preservative; textiles (cotton dyeing, preparation of sulfaneted oil. Turkey red oil. for person, for oils and decreased on the control of the control

tion of sulfonated oil, Turkey red oil; fly paper; fly oils and dope; electrical insulating compositions; toilet creams and hair dress-

ings; special soaps; rubber substitutes

31. CAULIFLOWER SEED, Brassica oleracea Var. Botrytis

Sources: Netherlands, Denmark

Pounds Imported: 15,238 Amount Paid: \$87,912 Use: Seeding purposes

32. CELERY SEED, Apium

Sources: British India, France, Italy

Pounds Imported: 1,010,242

Amount Paid: \$19,314

(9 year average)

Uses: Seeding purposes; condiment; oil used for flavoring and

medicine

33. CHICKORY, CRUDE, Cichorium intybus, and ENDIVE, Cichorium endivia

Sources: Belgium

Pounds Imported: 2,155,196 Amount Paid: \$78,043

Uses: (Chickory) leaves for salad; roots roasted for mixing with

coffee

(Endive) Leaves for salad

34. CINCHONA BARK, Cascarilla hexandra

Source: Netherlands, India Pounds Imported: 1,697,836 Amount Paid: \$587,366 Use: Tonic and stomachic

35. CINNAMON AND CHIPS, Cinnamomum zeylanicum

Sources: Ceylon, British East Africa

Pounds Imported: 748,438 Amount Paid: \$92,883

Uses: Medicine; source of cinnamon oil; flavoring; condiment

Cinnamon-leaf oil: medicine, flavoring, perfumery medicine, flavoring, perfumery

36. CITRON OR CITRON PEEL, Citrus medica

Sources: Italy, Greece, Palestine, Greece Albania, Italy

in brine-

Pounds Imported: 2,160,936 Amount Paid: \$122,490

crude dried -

Pounds Imported: 19,543 Amount Paid: \$9,470

candied-

Pounds Imported: 1,424,752 Amount Paid: \$149,564

(9 year averages)

Uses: Cookery, fruitcakes and puddings

37. CITRONELLA OIL, Collinsonia canadensis

Sources: Netherlands India, Ceylon

Pounds Imported: 1,592,801 Amount Paid: \$522,020

Uses: Perfumes; medicines; insectifuge; source of citronellal,

geraniol: toilet soaps

38. CLOVER SEEDS, Trifolium

Sources: France, Canada, Poland, Rumania, Hungary

Red -

Pounds Imported: 3,750,384

Amount Paid: \$506,640 (9 year average)

Alsike -

Pounds Imported: 1,810,144

Amount Paid: \$294,006 (9 year average)

Crimson -

Pounds Imported: 2,616,142

Amount Paid: \$144,702 (10 year average)

Sweet -

Pounds Imported: 2,479,604

Amount Paid: \$130,595 (9 year average)

White and Ladino -

Pounds Imported: 1,554,548

Amount Paid: \$251,535 (9 year average)

39. CLOVES, unground, Eugenia aromatica

Sources: British East Africa, Madagascar, Netherlands India

Pounds Imported: 3,405,715 Amount Paid: \$426,464

Uses: Condiment, medicine, aromatic; manufacture of clove oil. Clove oil: medicine (local irritant, anesthetic); flavoring, dent-

istry, perfumery, confectionery, soaps

40. COCOA LEAVES, Erythropylon coca

Sources: Peru. Netherlands India

Pounds Imported: 291,888

Amount Paid: \$54,184

Uses: Flavoring popular beverages; medicine (an unofficial drug;

contains very small amount of cocaine)

41. COCONUT MEAT, Cocos nuciferae

Sources: Cuba, Philippine Islands, British Malaya, Ceylon, China,

Japan

Pounds Imported: 56,412,650 Amount Paid: \$2,855,849

Uses: Eating purposes, in cakes, candies, etc.

42. COCONUT OIL

Sources: Philippine Islands, Czecho-Slovakia, Jamaica, British

Guiana, Canada

Pounds Imported: 308,662,742

Amount Paid: \$12,435,910

Uses: Soaps; butter substitutes; foodstuffs; cosmetics, candles,

emulsions, dyeing cotton

43. CORIANDER SEED, Coriandrum sativum

Sources: Morocco, Hungary, United Kingdom

Pounds Imported: 1,844,675 Amount Paid: \$59,833

Uses: Condiment, medicine, manufacture of coriander oil. Coriander oil: flavoring material for alcoholic beverages; condiment sauces; mayonnaise, candies, canned foods, catsup, chili sauce. Pickling agent; in salad dressing, soups, spice extractive; spice oils, tobacco products; source of linalol in perfumes, soaps; flavoring gins and cordials

44. CORK WOOD AND BARK, Quercus suber

Sources: Portugal, Spain, Italy, (Algeria) France

Pounds Imported: 71,976,325 Amount Paid: \$2,142,152

Uses: Filler, stoppers; insulation, sound deafener, life preservers, gaskets, etc.

45. CREAM OF TARTAR, *Potassium bitartrate*, from argols (by-product of the wine industry) by extraction with water and crystallization.

Source: Italy

Pounds Imported: 55,371 Amount Paid: \$7,847

Uses: Baking powder; preparation of other tartrates, medicine

(diuretic and cathartic); galvanic tinning of metals

46. CUMMIN SEED, Umbelliferae

Sources: Algeria, Malta, France, Iran

Pounds Imported: 794,982 Amount Paid: \$64,380

Uses: Medicine, flavoring, source of cummin oil. Cummin oil: medicine, flavoring, perfumery

47. DIGITALIS, Scrophulariaceae

Sources: Germany, United Kingdom, Canada, Italy, Belgium

Pounds Imported: 55,869 Amount Paid: \$9,198

Uses: Medicine (stimulant in acute circulatory failures, as a diuretic, and as a cardiac tonic)

48. ERGOT, Claviceps purpurea

Sources: Portugal, Germany, Spain, United Kingdom, Poland

Pounds Imported: 242,034 Amount Paid: \$147,842

Uses: Medicine (obstetrics), source of ergot oil

49. EUCALYPTUS OIL, Myrtaceae

Source: Australia

Pounds Imported: 365,687 Amount Paid: \$84,854

Uses: Medicine, flotation process of ore concentration; perfumes,

soap

50. FENNEL SEED, Foenum graecum and Foeniculum vulgare

Sources: British India, Italy, Czechoslovakia, France

Pounds Imported: 235,079 Amount Paid: \$16,331

Uses: Medicine (aromatic and carminative); oil - medicine, liqueurs, perfumery, soap-making. After essential oil has been extracted, fennel can be utilized as a cattle and chicken feed.

51. FENUGREEK SEED, Foenum graecum, Trigonella

Sources: Egypt, Morocco Pounds Imported: 448,630 Amount Paid: \$11,580

Uses: Medicine, vetinerary medicine

52. CHEWING FESCUE, Festuca

Sources: New Zealand, United Kingdom, Germany

Pounds Imported: 722,202 Amount Paid: \$143,385 (9 year average)

Uses: Seeding purposes; pasture grass

53. FLOWER SEED

Sources: Netherlands, United Kingdom, Japan, Germany, Italy,

France

Pounds Imported: 149,227 Amount Paid: \$200,839 Use: Seeding purposes

54. GAMBIER OR TERRA SAPONICA, Quercus aegilops

Sources: Netherlands India, Br. Malaya, Nigeria

Pounds Imported: 3,381,514

Amount Paid: \$218,832

Uses: Textile dyeing; tanning; medicine (astringent)

55. GARLIC, Allium sativum

Sources: Mexico, Chile, Japan, New Zealand, Italy

Pounds Imported: 5,218,322 Amount Paid: \$208,799

Uses: Condiment; in medicine; source of garlic oil

56. GENTIAN (YELLOW GENTIAN, BITTER ROOT), Gentiana

Sources: France, Yugoslavia Pounds Imported: 391,038 Amount Paid: \$26,839

Use: Medicine, for its local effect on mucous membrane of alimen-

tary tract; liqueurs

57. GRASS SEED, Gramineae

Sources: Denmark, Canada, Australia

Pounds Imported: 3,510,782 Amount Paid: \$423,170 Use: Seeding purposes

58. HEMLOCK, Conium

Source: Canada

Pounds Imported: 1,175,766

Amount Paid: \$4,221

Uses: a. bark — tanning industry, boiler compounds, pharma-

ceutical preparations

b. oil - medicine

59. HENNA, Lawsonia alba

Sources: Egypt, Iran, British India

Pounds Imported: 386,249 Amount Paid: \$16,848 Uses: Hair dye, medicine (3 year average, 1936 - 1938)

60. Hops, dried strobiles of Humulus lupulus

Sources: Belgium, Czechoslovakia, France, Germany, Hungary,

Italy, Netherlands, Poland and Danzig, Yugoslavia

Pounds Imported: 4,570,547 Amount Paid: \$1,671,808

Uses: Medicine (aromatic bitter); brewing beer and beer substi-

tutes

61. JUNIPER OIL AND BERRIES, Juniperus communis

Sources: Austria, Italy, Yugoslavia, Czechoslovakia

Pounds Imported (Oil): 7,174 Amount Paid: (Oil) \$6,853

Pounds Imported (Berries): 553,932

Amount Paid: \$31,349 (2 year average, 1937 and 1938)

Uses: Gin, cordials, medicine (treatment of cystites, etc.); fumigating, source of juniper oil. Juniper oil: medicine, veterinary

practice, preparation of gin and liqueurs

62. LAVENDER FLOWERS, Lavandula spica

Sources: France, Spain, Germany, United Kingdom

Pounds Imported: 25,042 Amount Paid: \$5,340

Uses: Medicine, insectifuge, perfumery, source of oil

The following figures for 1938 only:

LAVENDER OIL, Lavendula spica (Spike)

Pounds Imported: 14,035 Amount Paid: \$18,424

Uses: Veterinary practice, linaments

LAVENDER OIL, Lavendula vera Pounds Imported: 99,389 Amount Paid: \$221,036

Uses: Perfumes, soap, insectifuge, ceramics, liqueurs, lacquers,

medicine

63. LEMONGRASS OIL, from Andropogon citratus

Sources: British India Pounds Imported: 1,035,011 Amount Paid: \$396,301

Uses: Food extracts; manufacture of perfumery (manufacture of

ionone)

64. LEMON OIL, from peel of Citrus limonum

Source: Italy

Pounds Imported: 234,351 Amount Paid: \$309,373

Uses: Flavoring agent, soft drinks, perfumery, confectionery,

polishes

65. LICORICE ROOT, Glycyrrhiza globra

Sources: Turkey, Iraq, Russia, Greece, Syria, Italy

Pounds Imported: 66,130,602 Amount Paid: \$1,419,206

Uses: Flavoring tobacco and candy, chewing gums, beer and liquor industries, stabilizer in foam of some fire extinguishers, medicine,

laxatives and cough mixtures

66. LIME OIL, from Citrus aurantifolia

Sources: Mexico, Trinidad, British West India, Jamaica, Nether-

lands, United Kingdom, Canada, British Guiana

Pounds Imported: 56,928 Amount Paid: \$330,625

Uses: Extracts, flavoring, perfumery, toilet soaps, cosmetics

67. LINSEED OIL, from Linum usitatissimum

Sources: Netherlands, United Kingdom

Pounds Imported: 3,553,213 Amount Paid: \$198,918

Uses: Paints, varnishes, patent leather lacquers, linoleum, rubber substitutes, preparing carron oil

68. LOCUST OR CAROB BEANS, PODS, AND SEED, Robinia

Sources: Italy, Malta

Pounds Imported: 1,386,664

Amount Paid: \$24,546

(5 year average)

Use: Fodder

69. MACE, the coating (arillus) of nutmeg seeds, Myristic fragans

Sources: United Kingdom, British West Indies, British Malava,

French Indo China

Pounds Imported: 714,614

Amount Paid: \$286,768

Uses: Medicine, condiment

70. MANGROVE BARK, Rhizophora

Sources: British East Africa, Philippine Islands, British Malaya

Pounds Imported: 7,228,254

Amount Paid: \$111,985

Use: Tanning

71. MARJORAM LEAVES, Origanum majorana

Sources: Canada

Pounds Imported: 79,851

Amount Paid: \$9,178

Uses: Medicine, distillation of oil. Marjoram oil (Calamintha

oil): medicine, perfuming soaps, toilet preparations

72. MENTHOL, Hexahydrothymol, by freezing from peppermint oil.

(Peppermint plant - Mentha piperita)

Sources: China and Japan

Pounds Imported: 339,424

Amount Paid: \$864,412

Uses: Medicine - local anesthetic, antiseptic or counter-irritant;

perfumery, confectionery

73. MILLET SEED, Panicum miliaceum

Sources: Hungary, Turkey

Pounds Imported: 3,168,671

Amount Paid: \$47,516

Use: Grain

74. Mushrooms, Agaricus campestris, common mushroom

Sources: France, Germany, Italy, Poland and Danzig, Yugoslavia,

Japan

Pounds Imported: 2,030,527 Amount Paid: \$668,719

Uses: Eating purposes

75. Mustard Seed, Brassica juncea

Sources: China, United Kingdom, Netherlands, Rumania, Poland,

Japan

Pounds Imported: 11,609,749

Amount Paid: \$561,037

Uses: Condiment, source of mustard oil used in medicine

76. NEROLI, Orange Flower Oil

Sources: France, Netherlands

Pounds Imported: 795

Amount Paid: \$54,206 Uses: perfumery, flavoring

a. Bitter orange-flower oil, distilled from the fresh flowers of the

bitter orange, Citrus bigardia, Risso, or Citrus aurantium

b. Sweet orange-flower oil, distilled from the fresh flowers of the

sweet orange, Citrus aurantium, L., subspecies Sinensis

77. NUTGALLS OR GALLNUTS, (Quercus) an excrescence on trees, usually a variety of oak, caused by animals

Sources: China, Hongkong, Syria, Iran, Italy

Pounds Imported: 2,292,047

Amount Paid: \$196,760

Uses: Source of gallic and gallotannic acids; tanning industry;

ink manufacture; medicine; textile printing; pharmaceuticals

78. NUTMEGS, WHOLE, Myristica fragans

Sources: British West Indies, Netherlands, West Indies, Trinidad,

and Tobago, Cuba

Pounds Imported: 4,347,926

Amount Paid: \$480,338

Uses: Medicine, condiment; damaged seeds used as source of nut-

meg oil

79. OKRA, pods of Hibiscus escuplentus

Sources: Cuba, Dominican Republic

Pounds Imported: 1,449,694 Amount Paid: \$57,916

Use: Eating purposes

80. OTICICA OIL (In small seed of tree Covepia grandiflora of the Rosaceae)

Source: Brazil

Pounds Imported: 3,941,394

Amount Paid: \$381,807

(3 year average, 1936 - 1938)

Uses: Ingredient of special coatings; plasticizer in antifouling

coatings for bottom of ships (claims to be very effective)

81. OLIVE OIL, Edible, Olea europaea

Sources: Italy, Spain, France, Greece, Portugal, Tunisia, Algeria

Pounds Imported: 63,514,472

Amount Paid: \$7,464,340

Uses: As food, in ointments, linaments, etc., for manufacture of

"Castile" soap; special textile soaps; lubricant, wool oil; tanning

82. ORRIS OR IRIS ROOT, Iris pallida Lam., Iridaceae

Sources: Italy, Morocco, France, United Kingdom, Germany

Pounds Imported: 403,987

Amount Paid: \$28,107

Uses: Medicine - cathartic and emetic; tooth powders, perfumery;

source of orris oil used in perfumery, cosmetics, flavoring liqueurs

83. ORRIS ROOT OIL

Sources: Italy, Morocco, France, United Kingdom, Germany

Pounds Imported: 134

Amount Paid: \$4,951

(9 year average)

Uses: Perfumery, cosmetics, flavoring gins and liqueurs

84. PALMAROSA OIL, Indian Grass Oil, Rusa Oil, Indian Geranium Oil,

or Turkish Geranium Oil

Pounds Imported: 12,508

Amount Paid: \$33,280

Use: Perfumery

85. PAPAIN, Crude (PAPAW JUICE), juice of fruit and leaves and Carica papaya

Sources: United Kingdom, Ceylon, Japan, Siam, New Zealand

Pounds Imported: 130,130

Amount Paid: \$196,909

Uses: Medicine and food products

86. Paprica, Capsicum annum

Sources: Hungary, Spain, Czechoslovakia, Bulgaria

Pounds Imported: 5,722,717

Amount Paid: 763,649

Use: Condiment

87. PATCHOULI OIL AND LEAVES, Pogostemon patchouly

Sources: British Malaya

Oil -

Pounds Imported: 7,677

Amount Paid: \$18,318

(8 year average)

Leaves -

Pounds Imported: 549,067

Amount Paid: \$39,769

(3 year average - 1936 - 1938)

Uses: Oil used in perfumery (fixative); toilet preparations

88. PEPPER, Unground, Black, Piper nigrum

Sources: Netherlands India, British Malaya

Pounds Imported: 34,943,346

Amount Paid: \$3,000,965

Uses: Condiment; medicine; pepper oil (medicine)

89. PERILLA OIL, Labiatae

Sources: Japan, Kwantung, China

Pounds Imported: 33,884,421

Amount Paid: \$2,006,195

Uses: Substitute for linseed oil in printer's ink, varnish, etc.;

edible oil in Japan, China, India, etc.; manufacture of cheap var-

nishes; artificial leathers

90. Pettigrain Oil, from leaves of Citrus aurantium

Sources: Paraguay, France, Argentina

Pounds Imported: 74,685

Amount Paid: \$62,334

Uses: Perfumery (soaps; synthetic neroli; skin creams). (Distilled from the leaves and unripe fruit of bitter orange tree, *Citrus aurantium*, var. Amara (Southern France, Tunis) and *C. Assessu* (Paraguay)

91. PIMENTO, OR ALLSPICE, Pimenta officinalis

Source: Jamaica

Pounds Imported: 2,199,380 Amount Paid: \$205,903 Uses: Condiment; perfumery

92. PISTACHE NUTS, Anacardiaceae

Sources: Egypt, Italy, British Indies, Syria, Other Asia

Pounds Imported: 2,243,141 Amount Paid: \$584,142

Uses: Eating and confectionery purposes

93. POPPY SEED, Papaver somniferum

Sources: Netherlands, Poland, Hungary, Iran, France

Pounds Imported: 6,658,571 Amount Paid: \$429,528

Uses: Medicine; source of oil used as food oil, artists' colors;

adulterant for olive oil; soap stock; varnishes

POPPY SEED OIL

Pounds Imported: 23,670 Amount Paid: \$3,085

94. PSYLLIUM SEED, Plantago, Plantaginaceae

Sources: British India, France Pounds Imported: 3,257,764 Amount Paid: \$310,669

(9 year average)

Uses: Sizing silk, printing fabrics, paper manufacture, medicine,

cathartic

95. POTATOES, IRISH, Solanum tuberosum

Certified seed -Source: Canada

Pounds Imported: 71,722,025 Amount Paid: \$1,168,177

95. POTATOES, IRISH (Continued)

Other -

Sources: Canada, Bermuda, British West Indies, Cuba, Dominican

Republic, French West Indies Pounds Imported: 58,741,975

Amount Paid: \$650,324 Uses: Eating purposes 96. PYRETHRUM FLOWERS, Compasitae

Sources: Japan, British East Africa Pounds Imported: 10,508,504

Amount Paid: \$1,518,284

Uses: Insecticides

97. QUINCE SEED, Cydonia vulgaris

Sources: Persia, Syria, Palestine, Germany

Pounds Imported: 953,990

Amount Paid: \$36,191 (3 year average, 1936-1938)

Uses: Medicine

98. RADISH SEED, Raphanus sativum

Sources: Netherlands, Hungary, Denmark, United Kingdom, Japan

Pounds Imported: 1,583,466 Amount Paid: \$81,649

(9 year average)

Use: Seeding purposes

99. Rapeseed Oil, Brassica campestris

Sources: Netherlands, Japan, Argentina, Hungary, Rumania,

Germany, Belgium, Poland

Denatured (Colza) -

Pounds Imported: 9,475,552

Amount Paid: \$707,386

Not Denatured -

Pounds Imported: 5,306,446

Amount Paid: \$573,367

(9 year average)

RAPESEED ..-

Pounds Imported: 13,457,715

Amount Paid: \$394,407

Uses: Refined and "blown" rapeseed oil is used as a lubricant; illuminant; manufacture of rubber substitutes; heat treatment of steel. The refined cold-drawn oil is also used for edible purposes

100. ROSEMARY OIL, Rasmarinus officinalis

Sources: France, Spain, Tunisia, United Kingdom

Pounds Imported: 140,552 Amount Paid: \$55,556

Uses: Distillation of leaves gives oil used in perfumery and as a

carminative in medicine.

101. SAFFRON, Crude, stigmas of Crocus sativus

Sources: Spain, France, Italy Pounds Imported: 3,657 Amount Paid: \$27,247 Uses: Flavoring, coloring

102. SAGE, Salvia officinalis

Sources: Yugoslavia, Italy, Greece
Pounds Imported: 1,477,062
Amount Paid: \$42,964

Uses: Condiment, source of oil used in medicine and perfumery

103. SAGO, Tapioca, Cassava, Manihot esculanta, flour and crude

Sources: Netherlands, India Pounds Imported: 39,963,459 Amount Paid: \$646,855

Uses: Foodstuffs, laundry starches, adhesives

104. SANDALWOOD, SANTALWOOD, Santalum album of India

Sources: British India, Asia Pounds Imported: 1,330,200 Amount Paid: \$226,855 (3 year average, 1936 - 1938)

Uses: Source of oil, medicine, perfumery

SANDALWOOD OIL

Pounds Imported: 7,608 Amount Paid: \$32,531

105. SASSAFRAS OIL, Lauraceae

Source: Japan

Pounds Imported: 931,111 Amount Paid: \$223,872 (2 year average, 1937, 1938)

Uses: Flavoring, perfumery, medicine

106. SPINACH SEED, Spinacia oleracea

Sources: Netherlands, Denmark Pounds Imported: 3,084,007 Amount Paid: \$462,769 Use: Seeding purposes 107. STRAMONIUM, Datura stramonium (Also Jamestown Weed; Jimson Weed)

Sources: Hungary, Italy, Yugoslavia, Germany, Russia

Pounds Imported: 307,729 Amount Paid: \$322,695

Use: Medicine (similar to Belladonna)

108. SUGAR BEET SEED, Beta vulgaris

Sources: Germany, Poland Pounds Imported: 14,108,136 Amount Paid: \$1,456,045 Use: Seeding purposes

109. SUNFLOWER SEED, Helianthus annus

Sources: Russia, Hungary, Netherlands

Pounds Imported: 503,049 Amount Paid: \$28,594

Uses: Source of oil; medicine

SUNFLOWER SEED OIL

Pounds Imported: 10,160,247

Amount Paid: \$684,012

(9 year average)

Uses: Edible oil, soap, illuminant, manufacture of paper and plastics, glues; drying oil in paint and varnish industry

110. TEA, Thea sasanqua

Sources: Ceylon, Netherlands India, British India, Japan, British

India, United Kingdom, Japan Pounds Imported: 80,413,299

Amount Paid: \$16,669,361

Uses: Beverage, source of tea-seed oil; illuminant, soap-making, edible oil, hair oil, lubricant

111. THYME LEAVES, Thymus vulgaris

Sources: Syria, France, Spain, Morocco, Hungary

Pounds Imported: 115,173 Amount Paid: \$6,782

THYME OIL

Pounds Imported: 24,830 Amount Paid: \$18,067

Uses: Leaves used in flavoring; oil used in perfumery, cosmetics,

toilet soaps, flavoring, medicine

112. TOMATOES, Natural State, Lycopersicon esculentum and L. pimpinellifolium

Sources: Mexico, Cuba, Bermuda, Canada

Pounds Imported: 87,719,970 Amount Paid: \$2,461,307

Uses: Eating and preserving purposes

113. Gum Tragacanth, Gum exudation from Astragalus gummifer Sources: Iran, Turkey, U.S.S.R., France, United Kingdom, Nether-

lands, Indies

Pounds Imported: 1,745,882 Amount Paid: \$629,028

Uses: Pharmacy for making emulsions; adhesives, leather dressing,

calico printing; emulsifying agent

114. Tuba Root Or Derris, (Degulia) Leguminosae, Derris elliptica

Sources: British Malaya, Japan, Philippine Islands

Pounds Imported: 389,448 Amount Paid: \$57,647

Uses: Powdered root used as insecticide, fish poison, arrow poison

115. Tung Oil, seeds of Aleurites cordata

Sources: China, French Indo China, Hongkong

Pounds Imported: 117,223,014 Amount Paid: \$10,999,714

Uses: Varnishes, linoleum, making varnish driers

116. TURMERIC, Curcuma longa

Sources: United Kingdom, Haiti, British Indies, Japan

Pounds Imported: 1,125,399

Amount Paid: \$35,726

Uses: Coloring foods (yellow); condiment (curry powder); tex-

tile dyeing; indicator in analytic chemistry

117. Turnips and Rutabagas, Brassica rapa and Brassica napobrassica

Source: Canada

Pounds Imported: 97,876,703

Amount Paid: \$718,713

Uses: Eating and planting purposes

118. VALONIA, Acorn cups of an oak Quercus aegilops

Source: Turkey

Pounds Imported: 15,844,183

Amount Paid: \$239,582

Uses: Tanning industry (contain 65 per cent tannin)

119. VANILLA BEANS, cured, full-grown but immatured fruit of Vanilla planifolia

Sources: France, Mexico, Jamaica Pounds Imported: 1,137,330

Amount Paid: \$1,661,549

Uses: Confectionery, flavoring, perfumery, pharmaceuticals

120. VETCH SEED (Hairy Vetch), Vicia sativa

Sources: Hungary, Czechoslovakia, Lithuania

Pounds Imported: 2,932,098 Amount Paid: \$127,481

Use: Seeding purposes

121. VETIVERT OIL, Andropogon muricatus (root)

Sources: France, Netherlands India, French Africa, Netherlands

Pounds Imported: 6,371 Amount Paid: \$27.517

Use: Perfumery as Cuscus Oil

Total Number of Pounds Imported - 1,604,130,354

Total Amount Paid - \$100,951,762

IMPORTS BY OUNCES

122. QUININE SULPHATE, QUININE ALKALOID, and other salts derived from Cinchona Bark (Cascarilla hexandra)

Sources: Germany, Netherlands, Switzerland, United Kingdom

Ounces Imported: 2,030,827

Amount Paid: \$875,662 Use: Medicinal purposes

123. Otto Of Roses, Rosa damascena (Distillate derived from fresh flowers)

Sources: France, Bulgaria, Italy, Switzerland, Turkey

Ounces Imported: 29,884 Amount Paid: \$231,883 Uses: Perfumes, flavoring

IMPORTS BY BUSHELS

124. Flaxseed, Linum usitatissimum (LINSEED)

Sources: Argentina, Uruguay, Canada

Bushels Imported: 16,311,465 Amount Paid: \$20,156,210

Uses: Source of linseed oil and cake; medicine, as a demulcent and emollient. Linseed oil is used for paints, varnishes, patent leather, lacquers, linoleum, rubber substitute, preparing carron oil.

31

IMPORTS BY TONS

- 125. Jute, Corchorus tiliaceae and Jute Butts
 - Sources: British India, China, Netherlands India
 - Tons Imported: 50,703 Amount Paid: \$4,643,283
 - Uses: Grown for fiber which is used for sacking, burlap, and the cheaper varieties of twine, also made into wrapping paper
 - JUTE BUTTS
 - Tons Imported: 14,682 Amount Paid: \$892,299
 - Uses: Made up in cotton bagging, etc.

IMPORTS BY NUMBERS

- 126. Brier, Ivy, and Laurel Root, cut into blocks Sources: Algeria, Spain, Italy, Greece, France, Albania Number Imported: 27,867,763 (4 year average, 1935 - 1938)
 - Amount Paid: \$413,573
 - Uses: Brier pipes; ivy and laurel for medicinal purposes
- 127. COCONUTS in the shell, Cocos nuciferae
 - Sources: Trinidad and Tobago, British Honduras, Guatemala, Nicaragua, Panama Canal Zone, Republic of Panama, Mexico, Jamaica
 - Number Imported: 45,308,150
 - Amount Paid: \$952,715
 - Uses: Food and confectionery purposes
- 128. Hyacinth Bulbs, Hyacinthus
 - Sources: Netherlands, France
 - Number Imported: 16,839,359
 - Amount Paid: \$766,879
- 129. LILY-OF-THE-VALLEY, Convallaria
 - Source: Germany
 - Number Imported: 11,037,117
 - Amount Paid: \$199,326
- 130. NARCISSUS BULBS, Amaryllidaceae
 - Sources: Netherlands, United Kingdom
 - Number Imported: 1,637,718
 - Amount Paid: \$47,686
- 131. TULIP BULBS, Tulipa gesneriana
 - Source: Netherlands
 - Number Imported: 88,958,478
 - Amount Paid: \$1,356,378

TOTAL AMOUNT SPENT PER YEAR (AVERAGE) 1929 - 1938 \$131,487,656

LITERATURE ON THE SUBJECT

- 1. "American Medicinal Plants of Commercial Importance," U. S. Department of Agriculture, Washington, D. C., Miscellaneous Publication No. 77.
- 2. "A Big Field of Small Items: Essential Oils, Spices, Drugs, and Specialties," presented at the Seventh Annual Chemurgic Conference of the National Farm Chemurgic Council, Chicago, Illinois, March 27, 1941, printed in the March 31, 1941, issue of the Oil, Paint and Drug Reporter, 59 John Street, New York City.
- 3. "The Creation of a New Essential Oil Industry," Drug and Cosmetic Industry, 28 Renne Avenue, Pittsfield, Mass., September 1941.
- 4. "Cultivation of Sage and Coriander," Drug and Cosmetic Industry, 28 Renne Avenue, Pittsfield, Mass., July 1941.
- 5. "The Domestic Production of Essential Oils from Aromatic Plants," bulletin published by the National Farm Chemurgic Council, presented at the Sixth Annual Chemurgic Conference of the Council, Chicago, Illinois, March 29, 1940.
- 6. "Drug Plants Under Cultivation," U. S. Department of Agriculture, Farmers' Bulletin No. 663, United States Department of Agriculture, Washington, D. C., September 1935.
- 7. "Drying Crude Drugs," Farmers' Bulletin No. 1231, United States Department of Agriculture, Washington, D. C., November 1921.
- 8. "Engineers in the Production of Essential Oils," Agricultural Engineering, October 1940, the Journal of the American Society of Agricultural Engineers, St. Joseph, Michigan.
- 9. "Lavender Cultivation." Drug and Cosmetic Industry, April 1941.
- 10. "New Crops for Farmers in Oklahoma," bulletin published by the National Farm Chemurgic Council.
- 11. "New Opportunities for Vegetable Growers," paper delivered at 33rd Annual Convention of the Vegetable Growers Association of America, Columbus, Ohio, August 4, 1941, to appear in the convention proceedings of the Association.
- 12. "Perfumes and Spices," by A. Hyatt Verrill, L. C. Page & Company, Inc., Boston, 1940.

- 13. "The Possibilities of a Domestic Essential Oil Industry," August 1940, issue of Manufacturer's Record, published at Commerce & Water Streets, Baltimore, Md.
- 14. "A Report on the Domestic Cultivation of Coriander," November 1940, issue of The Spice Mill, 106 Water Street, New York City.
- 15. "South Urged to Cultivate Spices," August 1941, issue of The Spice Mill, presented at the First Annual Southern Chemurgic Conference, Nashville, Tennessee, June 18, 1941.
- 16. "Spices," by Henry N. Ridley, Macmillan and Co., Ltd., London, 1912.
- 17. "Spices," by Robert T. Willkie and Louis C. Webster, The Quarter-master Corps Subsistence School, Bulletin No. 42, Series X, November 1927.
- 18. "Spices and Condiments," by J. B. McNair, Field Museum of Natural History, Chicago, Illinois, 1930.
- 19. "Spices and Condiments," by H. S. Redgrove, Sir Isaac Pitman and Sons, Ltd., London, 1933.
- 20. "Spices and How to Know Them," by W. M. Gibbs, Matthews-Northrup Works, Buffalo, New York, 1909.
- 21. "Spices, Their Botanical Origin, Their Chemical Composition, Their Commercial Use," 4th and Revised Edition, The Spice Mill Publishing Co., 106 Water Street, New York City.
- 22. "A Textbook of Pharmacognosy," by H. W. Youngken, P. Blakiston's Son and Company, Inc., Philadelphia, 1936.
- 23. "We Can Grow Them Here," January 1941, issue of Country Life, published by Polo Magazines Inc., East Stroudsburg, Pennsylvania.